Go-kart aerodynamic optimization by means of CFD and RBF Mesh Morphing

Carlo Del Bene, Ruben Anello

Supervisor
Prof. Marco Evangelos Biancolini

Assistant Supervisor
Eng. Corrado Groth, Eng. Torbjörn Larsson
The aim of this study is the optimization of a go-kart bodywork shape, in terms of drag-force reduction, by means of CFD and RBF Mesh Morphing, evaluating the best configuration also in terms of downforce value and driver body size.
Topic choice

Why go-kart aerodynamics?

- **High** C_d, between 0.75 and 0.9
- Considerable lap-time improvement thanks to aerodynamic optimization

KP Studio lap-time simulator:
- 3 drag-force configurations analyzed
- Parma circuit (1154 mt) simulation
 0.2 sec gained with the drag-optimized configuration!
CFD Model

CFD Model set-up inside ANSYS Fluent 16.0 at 90 km/h and **standard** atmospheric conditions

- **6.5 Million** fluid cells
- **Realizable k-ε** turbulence model
- **Moving wall** boundary conditions
- **1461 iterations** at convergence
- Calculation activities run at UTV HPC facilities
CFD Results

Postprocessing using ANSYS CFD Post

- Fluid dynamic variables plots
- Streamlines
- Vectorial fields
- Custom plot surfaces definition
CFD Results

Optimization areas chosen in terms of numerical drag-force and c_d values

$$D = \frac{1}{2} \rho S v^2 c_d$$

$$D = 173.35 \text{ N}$$

$$c_d = 0.794$$

- 33% of total drag caused by the driver
- Relevant front bodywork contribution
- Lateral bodywork contribution apparently negligible but fundamental in driving flow over go-kart rear wheels

Drag-force histogram
CFD Results

Downforce and c_l numerical results

\[
L = \frac{1}{2} \rho Sv^2 c_l
\]

\[-L = 58.51 \text{ N}\]

\[c_l = -0.268\]

- Positive total downforce value
- 49% of total value caused by rear wheels
- Lifting contribution from front bumper
CFD and Mesh Morphing

TRADITIONAL APPROACH

AUTOMATIC PARAMETRIC OPTIMIZATION

MESH MORPHING
RBF Mesh Morphing

Mesh morpher used:

(\textit{rbf-morph})

Radial Basis Functions:

- **INPUT**
 - Radial Functions set
 - Source points
 - Assigned displacements

- **OUTPUT**
 - Motion solution

Set-up shape changes

Design shape changes

\textbf{OPTIMIZATION}

Carlo Del Bene, Ruben Anello
RBF-Morph Grafic-User-Interface inside ANSYS Fluent
Shape changes

Front panel vertical translation

Motion set-up

- **Chassis surface** selection
- Definition of 3 **selection encaps**
- Unitary vertical translation of selected points inside selection encaps
Shape changes

Locking surface sets

- **Chassis surface** selection
- Definition of **7 selection caps**
- **Null motion** prescribed to selected surfaces
Shape changes

Morphing domain

- Reduces the morphing action extent within the selected domain
Shape changes

Morphing action results
Design shape changes

Front panel vertical translation

- Baseline
- Intermediate amplitude
- Maximum amplitude
Design shape changes

Front panel widening

- Baseline
- Intermediate amplitude
- Maximum amplitude
Design shape changes

Front bumper widening (centre)

- Baseline
- Intermediate amplitude
- Maximum amplitude
Design shape changes

Front bumper widening (side)

- Minimum amplitude
- Intermediate amplitude
- Maximum amplitude
Design shape changes

Upper front bumper rotation (side)

- Minimum amplitude
- Intermediate amplitude
- Maximum amplitude

Carlo Del Bene, Ruben Anello
Design shape changes

Independent side bodywork shape changes due to go-kart asymmetry

Width reduction

- Baseline
- Intermediate amplitude
- Maximum amplitude
Design shape changes

Stretching

- Baseline
- Intermediate amplitude
- Maximum amplitude
Design shape changes

Frontal zone lowering

- Baseline
- Intermediate amplitude
- Maximum amplitude
Design shape changes

Rear inner corner rounding

- Baseline
- Intermediate amplitude
- Maximum amplitude
Design shape changes

Frontal zone reduction

- Baseline
- Intermediate amplitude
- Maximum amplitude

Carlo Del Bene, Ruben Anello
Design shape changes

Rear profile rotation

- Baseline
- Intermediate amplitude
- Maximum amplitude
The driver is exposed to the airflow and represents a major portion of the go-kart frontal area:

- Evaluation of the **driver body size effect** on aerodynamic penetration
- Evaluation of the **optimal configuration related to different driver sizes**
Driver size changes

Stick-model inside Siemens Femap to move driver’s arms and legs with few control points
Driver size changes

Points coordinates and related displacements exported in PTS format compatible with RBF-Morph

Carlo Del Bene, Ruben Anello
Driver size changes

Selection encap, translation

Selection encap, null displacement

Morphing domain
Driver size changes

Comparison between driver sizes before and after morphing action
Parametric optimization inside ANSYS Workbench (DesignXplorer)

- Shape changes made **parametric** by means of RBF-Morph directly in the Fluent case
- Definition of **15 input parameters** (shape changes) and **2 output parameters** (drag-force, downforce)
- Definition of upper and lower bound for each parameter

Optimization accomplished with DesignXplorer linked to CFD by the defined parameter set
Optimization based on custom *Design of Experiment*

- **Design of Experiment** built on the 17 parameters defined with RBF-Morph
- **DOE size equal to 97 Design points**, to ensure accuracy and to meet time constraints
- **600 iterations** per DP (60000 total iterations) and **80 hours** of overall calculation time
Response Surface

Evaluation of parameters influence on the results by means of *Response Surface*

- 2D/3D response
- Histogram/sensitivity curves
- Max/Min search
- Interpolated data quality
Goal Driven Optimization

Choice of the optimal configuration through *Goal Driven Optimization*

- **Screening** type optimization
- **1000 samples**
- Drag-force minimization
- Downforce maximization
Results

Both drag-force and downforce value improvement

\[D_{opt} = 169.36 \text{ N} \quad \text{and} \quad L_{opt} = 71.85 \text{ N} \]

- 2.3% gain over the baseline drag-force value
- 22% improvement in terms of downforce
Comparison between baseline and drag-force optimized configurations (right side)
Comparison between baseline and drag-force optimized configurations (left side)
Comparison between baseline and downforce optimized configurations (right side)
Comparison between baseline and downforce optimized configurations (left side)
Results

Medium-size driver optimization

- Shape changes contribution is higher with the small-size driver

- 3.1% improvement (6 N) with the small-size driver option

- 10% total improvement of the optimized small driver-size configuration over the standard bodywork configuration with medium-size driver

Small-size driver optimization
Comparison between optimized configurations in both medium- and small-size driver options
The results of the parametric optimization show:

- **2,3% drag-force reduction.** Predictable result since the performed study has been developed on an already designed bodywork hence presumably optimized.
- **22% downforce increase.** Consistent positive result which indeed highlights the poor optimization, in terms of downforce, of the baseline bodywork configuration.
- **Variability of the optimal drag-force wise configuration with the driver body size.** Predictable variability due to the high contribution of the driver to the total drag-force value.
- **Invariability of the optimal downforce wise configuration with the driver body size.** Contrary to what is observed in terms of drag-force, the contribution of the driver to the total downforce value is not significantly high. Therefore the optimal configuration is not affected by the driver size variation.
Authors:

- Carlo Del Bene, carlodelbene@gmail.com
- Ruben Anello, anello.ruben@gmail.com

Supervisor:

- Prof. Marco Evangelos Biancolini, biancolini@ing.uniroma2.it

Software used: