

The evaluation of aerodynamic drag of go-karts by means of coast down test and CFD analysis

Dr. Marco Evangelos Biancolini Department of Mechanical Engineering University of Rome *Tor Vergata*

GMC 2007 Cologne, 05-06/11/2007

www.torvergata-karting.it

TVK Research Group

- The Tor Vergata Karting (TVK) Research Group was born in 2002.
- Active in the Motorsports field, from competition go-karts to Formulas.
- Development of multi-disciplinary simulation tools, ranging from structural mechanics and fluid dynamics to vehicle dynamics and innovative materials.

Two spin-off companies are going to born

- Engineering software tools for the design and optimization of competition go-karts (www.tvk-project.com)
- Fluid-structure interaction and shape optimization tools to be integrated in the most used CFD software.

Land Speed Record

- Buckeye Bullet with Ohio state University
 - Suspensions
 - Chassis

Go kart Land Speed Record Project

- Drag evaluation (CFD, coast down test)
- Mission simulation, sensitivity analysis
- Bodywork optimisation (CFD, wind tunnel testing)

Goals of this study

- Aerodynamic Drag calculation by means of CFD analysis
- Evaluation of vehicle losses (Drag and Rolling) by means of coast down test
- Land speed record vehicle mission simulation
- Sensitivity analysis to drive LSR vehicle design and optimisation

CFD Analysis

- Geometric model/TVK 2003
- Full detailed CFD model in Fluent
 - Virtual wind tunnel
 - Reference speed 90 km/hr
 - Ground and wheels speed
 - Drag-forces analysis
 - Resultant
 - Distribution on vehicle parts

Geometric model

CFD model

- Pressure acting on wetted surfaces
- Stream lines of flow field

CFD results: drag forces and down forces

IANS

CFD result: drag distribution

CFD results: CX vs speed

Experimental measurement of losses...

- Go kart: CRG 100 Black Star
- Engine: Maxter 100 2T
- Circuit: ISAM Anagni
- Driver: Gabbiani Jr.
- Data logger: PI Delta Clubman Kart Kit
- Technical support: Racing Team CIK, PI Research

Acquisition system details

- Data logger PI Delta Clubman, dashboard PI X-Kart, speed sensor mounted on the front wheel
- RPM sensor coolant temperature sensor.

Acquisition system details

- Centrifugal clutch
 - Avoids rear axle locking at high speed in the event of engine failure
 - Allows to disconnect the engine while vehicle is running for the execution of coast down test

GMC 2007 Cologne, 05-06/11/2007 **NNSYS**

FLUENT[®]

Measurement procedure for the evaluation of losses and engine thrust

- Deceleration data allow losses parameters to be identified.
- Test is performed disconnecting the engine at high speed along the straight.
- Acceleration data analysis allows actual thrust at the wheel to be estimated; torque curve can be derived introducing mechanical efficiency of the transmission.
 - Test is performed accelerating the vehicle on the straight until maximum speed is achieved.

Data analysis theoretical model

- Vehicle equation of motion in longitudinal direction
- Thrust is related to dynamic torque delivered by the engine through the transmission ratio and efficiency
- Rolling losses and aerodynamic drag losses are accounted
- A model with stabilized constant CX is assumed (applicable for investigated speed range as confirmed by CFD analysis)

$$F_{.tot}(v) = Ma$$

$$F_{.tot}(v) = F_{thrust}(v) - F_{drag}(v) - F_{roll}(v)$$

$$F_{thrust}(v) = T\left(\frac{v}{2\pi R_{rot}Z_{tot}}\right)\frac{1}{R_{rot}Z_{tot}}\eta_t$$

$$F_{roll}(v) = Mg(f_0 + f_1v)$$

$$F_{drag}(v) = \frac{1}{2}\rho v^2 C_x A_{front}$$

Free deceleration

Acceleration

- Identified coefficients for losses are introduced in the model
- Complete equation is imposed considering observed values of speed and acceleration
- The only unknown is the thrust
- Torque_curve is computed

$$\begin{aligned} F_{.tot}(v) &= Ma \\ F_{.tot}(v) &= F_{thrust}(v) - F_{drag}(v) - F_{roll}(v) \\ F_{thrust}(v) &= T \left(\frac{v}{2\pi R_{rot} Z_{tot}} \right) \frac{1}{R_{rot} Z_{tot}} \eta_t \\ F_{roll}(v) &= Mg(f_0 + f_1 v) \\ F_{drag}(v) &= \frac{1}{2} \rho v^2 C_x A_{front} \end{aligned}$$

Results: deceleration

GMC 2007 Cologne, 05-06/11/2007

FUENT[®] www.torve

Results for reference vehicle set-up

Results: acceleration

- At each lap an acceleration test is performed
- The portion of speed vs time curve recorded related to acceleration test is extracted
- Numerical differentiation of filtered data
 - Thrust calculation
 - Torque calculation

Sensitivity analysis

- Mathematical model can be used to simulate the mission of LSR to estimate:
 - Sensitivity of top speed to model parameters
 - Acceleration time and space required to reach top speed
 - Planning of vehicle improvements toward a new record (current record is 185 km/hr for category investigated in this study)

Top speed calculation

- Theoretical top speed is calculated from equilibrium between engine max power and power loss
- Transmission ratio for top speed is obtained imposing that at top speed the engine runs at maximum power RPM

$$P_{\max}\eta_{t} = \left(Mg(f_{0} + f_{1}v) + \frac{1}{2}\rho v^{2}C_{x}A_{front}\right)v$$

$$Z_{V\max} = \frac{RPM_{P\max}2\pi R_{rot}}{v_{\max}}$$

Sensitivity analysis results

Variation (± 40%) of each parameter (step 20%)
 Effect (%) on vehicle top speed

		-40%	-20%	20%	40%
Cx * Cross section		18.9	7.8	-5.9	-10.7
f0		-1.27	0.6	-0.6	-1.27
f1		-0.92	-0.46	0.46	0.93
Power	4	-16.3	-7.4	6.5	12.3
Weight	L <u>1</u>	0.3	0.17	-0.17	-0.35

Feasible solution

INNSYS

Acting on the parameters that mainly influence top speed

> Reduction of drag acting on bodywork

Increasing max power tuning the engine

$$v_{max}(0.8, 26 \cdot hp) = 132.616 \frac{km}{hr}$$

 $v_{max}(0.2, 30 \cdot hp) = 196.61 \frac{km}{hr}$

$$v_{\text{max}}(0.2, 30 \cdot \text{hp}) = 196.61 \frac{\text{km}}{\text{hr}}$$

Power balance 30 Thrust Losses Max 25 20 Power (kW) 15 10 100 50 150 200 Speed (kph)

Feasible solution details

Conclusions

- CFD analysis allows to perform a quantitative prediction of aerodynamic drag ($Cx \neq 0.78$)
- The proposed experimental test method allows to evaluate loss model parameters (Cx=0.899) and actual engine thrust
- Different estimation can be related to the different set-up (different vehicle shape, different driver heights)
- CFD analysis allows to study in detail how drag is produced and how is distributed on vehicle components
- Mission simulation allows to optimise the project and to plan the event

Proposed tools are currently in use to optimise the vehicle (bodywork, engine tuning, tyres)

Top Kart Speed Project is supported by:

The evaluation of aerodynamic drag of go-karts by means of coast down test and CFD analysis

Dr. Marco Evangelos Biancolini Department of Mechanical Engineering University of Rome *Tor Vergata*

GMC 2007 Cologne, 05-06/11/2007

www.torvergata-karting.it